Calmodulin is involved in heat shock signal transduction in wheat.

نویسندگان

  • Hong-Tao Liu
  • Bing Li
  • Zhong-Lin Shang
  • Xiao-Zhi Li
  • Rui-Ling Mu
  • Da-Ye Sun
  • Ren-Gang Zhou
چکیده

The involvement of calcium and calcium-activated calmodulin (Ca(2+)-CaM) in heat shock (HS) signal transduction in wheat (Triticum aestivum) was investigated. Using Fluo-3/acetoxymethyl esters and laser scanning confocal microscopy, it was found that the increase of intracellular free calcium ion concentration started within 1 min after a 37 degrees C HS. The levels of CaM mRNA and protein increased during HS at 37 degrees C in the presence of Ca(2+). The expression of hsp26 and hsp70 genes was up-regulated by the addition of CaCl(2) and down-regulated by the calcium ion chelator EGTA, the calcium ion channel blockers LaCl(3) and verapamil, or the CaM antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and chlorpromazine. Treatment with Ca(2+) also increased, and with EGTA, verapamil, chlorpromazine, or trifluoperazine decreased, synthesis of HS proteins. The temporal expression of the CaM1-2 gene and the hsp26 and hsp70 genes demonstrated that up-regulation of the CaM1-2 gene occurred at 10 min after HS at 37 degrees C, whereas that of hsp26 and hsp70 appeared at 20 min after HS. A 5-min HS induced expression of hsp26 after a period of recovery at 22 degrees C after HS at 37 degrees C. Taken together, these results indicate that Ca(2+)-CaM is directly involved in the HS signal transduction pathway. A working hypothesis about the relationship between upstream and downstream of HS signal transduction is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis.

Heat shock (HS) is a common form of stress suffered by plants. It has been proposed that calmodulin (CaM) is involved in HS signal transduction, but direct evidence has been lacking. To investigate the potential regulatory function of CaM in the HS signal transduction pathway, T-DNA knockout mutants for AtCaM2, AtCaM3, and AtCaM4 were obtained and their thermotolerance tested. Of the three knoc...

متن کامل

Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants.

Calcineurin (CaN) is a Ca2+- and calmodulin-dependent protein phosphatase (PP2B) that, in yeast, is an integral intermediate of a salt-stress signal transduction pathway that effects NaCl tolerance through the regulation of Na+ influx and efflux. A truncated form of the catalytic subunit and the regulatory subunit of yeast CaN were coexpressed in transgenic tobacco plants to reconstitute a cons...

متن کامل

Identification of the ubiquitin-proteasome pathway in the regulation of the stability of eukaryotic elongation factor-2 kinase.

Eukaryotic elongation factor-2 kinase (eEF-2 kinase) is a highly conserved calcium/calmodulin-dependent enzyme involved in the regulation of protein translation and cell proliferation. Rapid changes in the activity and abundance of eEF-2 kinase have been observed on growth stimulation, and increased enzyme activity is characteristic of malignant cell growth. Yet the mechanism for controlling th...

متن کامل

Identification of Leaf Proteins Differentially Accumulated between Wheat Cultivars Distinct in Their Levels of Drought Tolerance

The drought-tolerant 'Ningchun 47' (NC47) and drought-sensitive 'Chinese Spring' (CS) wheat (Triticum aestivum L.) cultivars were treated with different PEG6000 concentrations at the three-leaf stage. An analysis on the physiological and proteomic changes of wheat seedling in response to drought stress was performed. In total, 146 differentially accumulated protein (DAP) spots were separated an...

متن کامل

Proteomic analysis of middle and late stages of bread wheat (Triticum aestivum L.) grain development

Proteomic approaches were applied in four grain developmental stages of the Chinese bread wheat Yunong 201 and its ethyl methanesulfonate (EMS) mutant line Yunong 3114. 2-DE and tandem MALDI-TOF/TOF-MS analyzed proteome characteristics during middle and late grain development of the Chinese bread wheat Yunong 201 and its EMS mutant line Yunong 3114 with larger grain sizes. We identified 130 dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 132 3  شماره 

صفحات  -

تاریخ انتشار 2003